Spin Hall effect by surface roughness
نویسندگان
چکیده
منابع مشابه
Optical spin hall effect.
A remarkable analogy is established between the well-known spin Hall effect and the polarization dependence of Rayleigh scattering of light in microcavities. This dependence results from the strong spin effect in elastic scattering of exciton polaritons: if the initial polariton state has a zero spin and is characterized by some linear polarization, the scattered polaritons become strongly spin...
متن کاملSpin-torque ferromagnetic resonance induced by the spin Hall effect.
We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field...
متن کاملInverse spin Hall effect driven by spin motive force.
The spin Hall effect is a phenomenon in which an electric field induces a spin Hall current. In this Letter, we examine the inverse effect that, in a ferromagnetic conductor, a charge Hall current is induced by a spin motive force, or a spin-dependent effective "electric" field E_{s}, arising from the time variation of magnetization texture. By considering skew-scattering and side-jump processe...
متن کاملUniversal intrinsic spin Hall effect.
We describe a new effect in semiconductor spintronics that leads to dissipationless spin currents in paramagnetic spin-orbit coupled systems. We argue that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic. In the usual case where both spin-orbit split bands are occupied, the...
متن کاملThe Quantum Spin Hall Effect
Most quantum states of condensed matter are classified by the symmetries they break. For example, crystalline solids break translational symmetry, and ferromagnets break rotational symmetry. By contrast, topological states of matter evade traditional symmetrybreaking classification schemes, and they signal the existence of a fundamentally different organizational principle of quantum matter. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.91.045407